Boosting Correlation Based Penalization in Generalized Linear Models

نویسندگان

  • Jan Ulbricht
  • Gerhard Tutz
چکیده

In high dimensional regression problems penalization techniques are a useful tool for estimation and variable selection. We propose a novel penalization technique that aims at the grouping effect which encourages strongly correlated predictors to be in or out of the model together. The proposed penalty uses the correlation between predictors explicitly. We consider a simple version that does not select variables and a boosted version which is able to reduce the number of variables in the model. Both methods are derived within the framework of generalized linear models. The performance is evaluated by simulations and by use of real world data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining Quadratic Penalization and Variable Selection via Forward Boosting

Quadratic penalties can be used to incorporate external knowledge about the association structure among regressors. Unfortunately, they do not enforce single estimated regression coefficients to equal zero. In this paper we propose a new approach to combine quadratic penalization and variable selection within the framework of generalized linear models. The new method is called Forward Boosting ...

متن کامل

Wavelet-based gradient boosting

A new data science tool named wavelet-based gradient boosting is proposed and tested. The approach is special case of componentwise linear least squares gradient boosting, and involves wavelet functions of the original predictors.Wavelet-based gradient boosting takes advantages of the approximate 1 penalization induced by gradient boosting to give appropriate penalized additive fits. The method...

متن کامل

Efficient Estimators for Generalized Additive Models

Generalized additive models are a powerful generalization of linear and logistic regression models. In this paper we show that a natural regression graph learning algorithm efficiently learns generalized additive models. Efficiency is proven in two senses: the estimator’s future prediction accuracy approaches optimality at rate inverse polynomial in the size of the training data, and its runtim...

متن کامل

Fitting Generalized Additive Models: A Comparison of Methods

There are several procedures for fitting generalized additive models, i.e. multivariate regression models for an exponential family response where the influence of each single covariates is assumed to have unknown, potentially non-linear shape. Simulated data is used to compare a smoothing parameter optimization approach for selection of smoothness and covariate, a stepwise approach, a mixed mo...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007